Name	Date
	2400

Directions: Convert each expression into a complex number in the form a + bi

1)
$$\frac{1+2i}{3-4i}$$
 2) $\frac{5+2i}{\sqrt{3+4i}}$

3)
$$\frac{9}{\sqrt{7+24i}}$$
 4) $\left(1+\frac{3}{1+i}\right)^2$

5)
$$\left(\frac{1-i}{1+i}\right)^4$$
 6) $\left(\frac{1-i\sqrt{3}}{2+2i}\right)^2$

Challenge Problems

Directions: These are optional bonus problems you may attempt if you desire.

C1) Prove that if z_0 is a root of the polynomial equation $z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_n = 0$, with z = a + bi and $a_n \in \mathbb{R}$ (meaning that z is complex and all coefficients a_n are real), then $\overline{z_0}$ (the complex conjugate of z_0) is also a root of the equation. *Hint: Recall that the conjugate of a real number is the number itself.*

Hint: Recall that the product of two conjugates is the same as the conjugate of their product.