Name <u>Key</u>

Date ___

Directions: Convert each complex number to the form $r(\cos(\theta) + i\sin(\theta))$

1)
$$1 + i\sqrt{3}$$

Draw a graph. Pythag triple; Mag 2, Arg pi/3. $2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$

Easy. Magnitude 1, argument pi/2. $\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)$

2) 4 - 3i

Draw a graph. Another pythag triple; Mag 5. Arg isn't easily calculable; just use the formula: $\arctan(-3/4)$. $5(\cos(\arctan(-3/4)) + i\sin(\arctan(-3/4)))$

4)
$$\sin\left(\frac{\pi}{3}\right) + i\cos\left(\frac{\pi}{3}\right)$$

Draw a graph. This isn't already in polar form. You can convert to standard to get $\frac{\sqrt{3}}{2} + \frac{i}{2}$, then plot that to get an easy triangle. Mag 1, arg pi/6. $\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)$

Challenge Problems

Directions: These are optional bonus problems you may attempt if you desire.

Cl) Suppose you have the function $z = t(\cos t + i \sin t)$. What would this function look like on the complex plane as *t* goes to infinity? What if *t* goes to negative infinity? Do these two graphs (as *t* goes to positive or negative infinity) intersect, and if so, where?

The graphs look like this, with t-> positive infinity rotating in the CCW direction and t-> negative infinity rotating in the CW direction. The graphs intersect every pi/2+pi*k radians, so their intersections are: $I = (-1)^k i * (\frac{\pi}{2} + \pi k)$, $k \in \mathbb{N}$. The graph is on the next page.

Parametric plot:

